

Wath Sixth Form Subject Preparation Pack

MATHEMATICS

| World-class |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| learning |
| World-class |
| learning every |
| lesson, every |
| day | | The highest |
| :---: |
| expectations |
| Everyone can be |
| successful; |
| always expect |
| the highest |
| standards |\quad| No excuses |
| :---: |
| Create solutions |
| not excuses; |
| make positive |
| thinking a habit | | Growth |
| :---: |
| mindset |
| Believe you can |
| improve; work |
| hard and value |
| feedback | | Never give |
| :---: |
| up |
| Resilience is |
| essential; be |
| relentless in the |
| pursuit of |
| excellence |\quad| Everyone is |
| :---: |
| valued |
| Diversity is |
| celebrated; see |
| the best in |
| everyone | | Integrity
 Be trustworthy
 and honest;
 deliver on
 promises and
 walk the talk |
| :---: |

A-Level Mathematics Transition Pack

Contents

- What is Mathematics
- Why should I study Mathematics?
- What careers could A Level Mathematics lead to?
- What will I study? .
- How will I be assessed?
- Recommended resources
- Additional support.

There is a huge shortage of people with STEM skills needed to enter the workforce.

There are many new applications of mathematics in technology:

- Games Design
- Internet Security
- Programming
- Communications

What is Mathematics?

A level Mathematics gives you the opportunity to study topics such as geometry, calculus and trigonometry (pure mathematics) and to use these ideas within the 'applied' topics such as mechanics and statistics. Mechanics is strongly linked to physics, and builds on ideas of motion and forces to work out how and why objects move. Statistics allows us to make sense of the complex and variable world around us via analytical methods in order to draw reliable conclusions from 'sets' of information.

Why should I study Mathematics?

Mathematics complements a whole range of other subjects and prepares you for further study and employment in many disciplines that involve the use of Mathematics. You will gain knowledge of mathematical techniques that build on GCSE knowledge and develop problem solving and analytical thinking, skills that are desirable in numerous careers. If you have enjoyed your GCSE Mathematics, especially the algebra, trigonometry and problem-solving aspects, then you should consider Mathematics at A-Level.

What careers could Mathematics lead to?

A-Level Mathematics provides a basis for subsequent quantitative work in a wide range of higher education courses and in employment. Some students go on to university to study Mathematics either as a single honours degree or in combination with another subject, for example business, science, engineering, computing, technology or humanities. Others seek employment or apprenticeships where an A-Level Mathematics qualification is valued for example accounting, engineering.
> "Maths is the only A level proven to increase earnings in later life - by an average of 10%."

What will I'study?

At Wath Academy we cover the Edexcel 9MAO syllabus which covers a breadth of knowledge split across 3 papers.

How will I be assessed?

Each paper above is a 2 hours examination paper, sat at the end of the course.

Recommended resources

Headstart to A-level Maths, this aims to consolidate GCSE skills in preparation for the increased demands at A-Level.

We have also compiled a booklet to help you prepare for A-Level Mathematics studies. You should have met all of the topics in the Consolidation booklet previously in GCSE. Start by working through the Consolidation booklet making sure that you check your answers as you go along. The booklet is available at the end of this pack.

Meet the A-Level Mathematics Staff

We currently have 5 members of staff that teach A-Level Mathematics. If you choose to study A-Level Mathematics at Wath Academy you will have 6 lessons a week, this will be split between two teachers. Our A-Level team are always available to help and we encourage students to ask questions and explore even further into the world of mathematics.

Mrs Casey
Head of Mathematics
Pure Maths, Mechanics and Statistics

Mr Omidi

Key Stage 5 Coordinator
Pure Maths and Mechanics

Level 3 Core Maths

Miss Jandu

Pure Maths and Statistics

Mrs Weatheral

Pure Maths, Mechanics and Statistics

A-LEVEL MATHEMATICS

GCSE Consolidation Pack

To be successful in A-Level Mathematics, it is essential that you are confident and competent with the skills on the upcoming pages. Your knowledge of these is assumed throughout the whole of the Edexcel A-level Mathematics and they are not directly taught at the start of the year.

1. Surds
2. Rules of indices
3. Factorising expressions
4. Completing the square
5. Solving linear and quadratic simultaneous equations
6. Parallel and perpendicular lines
7. Proportion
8. Trigonometry - in both right angled and non-right angled triangles

For each of these you will find on the upcoming pages some worked examples, questions to practise and the answers for you to check.

We suggest also using the Maths Genie website to find videos to support you with nay of the areas above you may have found more tricky.

Surds and rationalising the denominator

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds

Key points

- A surd is the square root of a number that is not a square number, for example $\sqrt{2}, \sqrt{3}, \sqrt{5}$, etc.
- Surds can be used to give the exact value for an answer.
- $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$
- $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$
- To rationalise the denominator means to remove the surd from the denominator of a fraction.
- To rationalise $\frac{a}{\sqrt{b}}$ you multiply the numerator and denominator by the surd \sqrt{b}
- To rationalise $\frac{a}{b+\sqrt{c}}$ you multiply the numerator and denominator by $b-\sqrt{c}$

Examples

Example 1 Simplify $\sqrt{50}$

$\sqrt{50}=\sqrt{25 \times 2}$	Choose two numbers that are factors of 50 . One of the factors must be a square number
$=\sqrt{25} \times \sqrt{2}$	
$=5 \times \sqrt{2}$	
$=5 \sqrt{2}$	2Use the rule $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$ 3
Use $\sqrt{25}=5$	

Example 2 Simplify $\sqrt{147}-2 \sqrt{12}$

$$
\begin{aligned}
& \sqrt{147}-2 \sqrt{12} \\
& =\sqrt{49 \times 3}-2 \sqrt{4 \times 3} \\
& =\sqrt{49} \times \sqrt{3}-2 \sqrt{4} \times \sqrt{3} \\
& =7 \times \sqrt{3}-2 \times 2 \times \sqrt{3} \\
& =7 \sqrt{3}-4 \sqrt{3} \\
& =3 \sqrt{3}
\end{aligned}
$$

1 Simplify $\sqrt{147}$ and $2 \sqrt{12}$. Choose two numbers that are factors of 147 and two numbers that are factors of 12. One of each pair of factors must be a square number

2 Use the rule $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$
3 Use $\sqrt{49}=7$ and $\sqrt{4}=2$
4 Collect like terms

Example 3 Simplify $(\sqrt{7}+\sqrt{2})(\sqrt{7}-\sqrt{2})$

$$
\begin{aligned}
& (\sqrt{7}+\sqrt{2})(\sqrt{7}-\sqrt{2}) \\
& =\sqrt{49}-\sqrt{7} \sqrt{2}+\sqrt{2} \sqrt{7}-\sqrt{4} \\
& =7-2 \\
& =5
\end{aligned}
$$

1 Expand the brackets. A common mistake here is to write $(\sqrt{7})^{2}=49$

2 Collect like terms:
$-\sqrt{7} \sqrt{2}+\sqrt{2} \sqrt{7}$ $=-\sqrt{7} \sqrt{2}+\sqrt{7} \sqrt{2}=0$

Example 4 Rationalise $\frac{1}{\sqrt{3}}$

$$
\begin{aligned}
\frac{1}{\sqrt{3}} & =\frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \\
& =\frac{1 \times \sqrt{3}}{\sqrt{9}} \\
& =\frac{\sqrt{3}}{3}
\end{aligned}
$$

1 Multiply the numerator and denominator by $\sqrt{3}$

2 Use $\sqrt{9}=3$

Example 5 Rationalise and simplify $\frac{\sqrt{2}}{\sqrt{12}}$

$$
\begin{aligned}
\frac{\sqrt{2}}{\sqrt{12}} & =\frac{\sqrt{2}}{\sqrt{12}} \times \frac{\sqrt{12}}{\sqrt{12}} \\
& =\frac{\sqrt{2} \times \sqrt{4 \times 3}}{12} \\
& =\frac{2 \sqrt{2} \sqrt{3}}{12} \\
& =\frac{\sqrt{2} \sqrt{3}}{6}
\end{aligned}
$$

1 Multiply the numerator and denominator by $\sqrt{12}$

2 Simplify $\sqrt{12}$ in the numerator. Choose two numbers that are factors of 12 . One of the factors must be a square number

3 Use the rule $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$
4 Use $\sqrt{4}=2$
5 Simplify the fraction:
$\frac{2}{12}$ simplifies to $\frac{1}{6}$

Example 6 Rationalise and simplify $\frac{3}{2+\sqrt{5}}$

$\frac{3}{2+\sqrt{5}}=\frac{3}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}}$	1Multiply the numerator and denominator by $2-\sqrt{5}$ $=\frac{3(2-\sqrt{5})}{(2+\sqrt{5})(2-\sqrt{5})}$ $=\frac{6-3 \sqrt{5}}{4+2 \sqrt{5}-2 \sqrt{5}-5}$ $=\frac{6-3 \sqrt{5}}{-1}$ $=3 \sqrt{5}-6$
4Expand the brackets Divide the numerator by -1 Remember to change the sign of all the fraction terms when dividing by -1	

Practice

1 Simplify.
a $\sqrt{45}$
b $\sqrt{125}$
c $\quad \sqrt{48}$
d $\sqrt{175}$
e $\sqrt{300}$
f $\sqrt{28}$
g $\sqrt{72}$
h $\sqrt{162}$

Hint

One of the two numbers you choose at the start must be a square number.

2 Simplify.
a $\quad \sqrt{72}+\sqrt{162}$
b $\sqrt{45}-2 \sqrt{5}$
c $\sqrt{50}-\sqrt{8}$
d $\sqrt{75}-\sqrt{48}$
e $2 \sqrt{28}+\sqrt{28}$
f $2 \sqrt{12}-\sqrt{12}+\sqrt{27}$

Watch out!
Check you have chosen the highest square number at the start.

3 Expand and simplify.
a $\quad(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})$
b $\quad(3+\sqrt{3})(5-\sqrt{12})$
c $\quad(4-\sqrt{5})(\sqrt{45}+2)$
d $(5+\sqrt{2})(6-\sqrt{8})$

edexcel

4 Rationalise and simplify, if possible.
a $\frac{1}{\sqrt{5}}$
b $\frac{1}{\sqrt{11}}$
c $\frac{2}{\sqrt{7}}$
d $\frac{2}{\sqrt{8}}$
e $\frac{2}{\sqrt{2}}$
f $\frac{5}{\sqrt{5}}$
g $\frac{\sqrt{8}}{\sqrt{24}}$
h $\frac{\sqrt{5}}{\sqrt{45}}$

5 Rationalise and simplify.
a $\frac{1}{3-\sqrt{5}}$
b $\frac{2}{4+\sqrt{3}}$
c $\frac{6}{5-\sqrt{2}}$

Extend

6 Expand and simplify $(\sqrt{x}+\sqrt{y})(\sqrt{x}-\sqrt{y})$

7 Rationalise and simplify, if possible.
a $\frac{1}{\sqrt{9}-\sqrt{8}}$
b $\frac{1}{\sqrt{x}-\sqrt{y}}$

edexcel

Answers

1 a $3 \sqrt{5}$
b $5 \sqrt{5}$
c $\quad 4 \sqrt{3}$
d $\quad 5 \sqrt{7}$
e $10 \sqrt{3}$
f $2 \sqrt{7}$
g $\quad 6 \sqrt{2}$
h $9 \sqrt{2}$
2 a $15 \sqrt{2}$
b $\sqrt{5}$
c $3 \sqrt{2}$
d $\sqrt{3}$
e $\quad 6 \sqrt{7}$
f $5 \sqrt{3}$
3 a -1
c $10 \sqrt{5}-7$
P-
b $\quad 9-\sqrt{3}$
d $26-4 \sqrt{2}$
4 a $\frac{\sqrt{5}}{5}$
c $\frac{2 \sqrt{7}}{7}$
b $\frac{\sqrt{11}}{11}$
e $\sqrt{2}$
d $\frac{\sqrt{2}}{2}$
g $\frac{\sqrt{3}}{3}$
h $\frac{1}{3}$

5 a $\frac{3+\sqrt{5}}{4}$
b $\frac{2(4-\sqrt{3})}{13}$
c $\quad \frac{6(5+\sqrt{2})}{23}$
$6 x-y$

7 a $\quad 3+2 \sqrt{2}$
b $\frac{\sqrt{x}+\sqrt{y}}{x-y}$

Rules of indices

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions - basic algebraic manipulation, indices and surds

Key points

- $a^{m} \times a^{n}=a^{m+n}$
- $\frac{a^{m}}{a^{n}}=a^{m-n}$
- $\left(a^{m}\right)^{n}=a^{m n}$
- $a^{0}=1$
- $a^{\frac{1}{n}}=\sqrt[n]{a}$ i.e. the nth root of a
- $a^{\frac{m}{n}}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}$
- $a^{-m}=\frac{1}{a^{m}}$
- The square root of a number produces two solutions, e.g. $\sqrt{16}= \pm 4$.

Examples

Example 1 Evaluate 10°

$$
\begin{array}{l|l}
10^{0}=1 & \begin{array}{l}
\text { Any value raised to the power of zero is } \\
\text { equal to } 1
\end{array}
\end{array}
$$

Example 2 Evaluate $9^{\frac{1}{2}}$

$9^{\frac{1}{2}}$	$=\sqrt{9}$
	$=3$

Example 3 Evaluate $27^{\frac{2}{3}}$

$$
\begin{aligned}
27^{\frac{2}{3}} & =(\sqrt[3]{27})^{2} \\
& =3^{2} \\
& =9
\end{aligned}
$$

1 Use the rule $a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}$
2 Use $\sqrt[3]{27}=3$

edexcel

Example 4 Evaluate 4^{-2}

$$
\begin{aligned}
4^{-2} & =\frac{1}{4^{2}} \\
& =\frac{1}{16}
\end{aligned}
$$

1 Use the rule $a^{-m}=\frac{1}{a^{m}}$
2 Use $4^{2}=16$

Example 5 Simplify $\frac{6 x^{5}}{2 x^{2}}$

$$
\begin{array}{l|l}
\frac{6 x^{5}}{2 x^{2}}=3 x^{3} & 6 \div 2=3 \text { and use the rule } \frac{a^{m}}{a^{n}}=a^{m-n} \text { to } \\
\text { give } \frac{x^{5}}{x^{2}}=x^{5-2}=x^{3}
\end{array}
$$

Example 6 Simplify $\frac{x^{3} \times x^{5}}{x^{4}}$

$$
\begin{aligned}
& \frac{x^{3} \times x^{5}}{x^{4}}=\frac{x^{3+5}}{x^{4}}=\frac{x^{8}}{x^{4}} \\
& =x^{8-4}=x^{4} \\
& 1 \text { Use the rule } a^{m} \times a^{n}=a^{m+n} \\
& 2 \text { Use the rule } \frac{a^{m}}{a^{n}}=a^{m-n}
\end{aligned}
$$

Example 7 Write $\frac{1}{3 x}$ as a single power of x

$\frac{1}{3 x}=\frac{1}{3} x^{-1}$	Use the rule $\frac{1}{a^{m}}=a^{-m}$, note that the fraction $\frac{1}{3}$ remains unchanged

Example 8 Write $\frac{4}{\sqrt{x}}$ as a single power of x

$$
\begin{array}{rl|l}
\frac{4}{\sqrt{x}} & =\frac{4}{x^{\frac{1}{2}}} & 1 \text { Use the rule } a^{\frac{1}{n}}=\sqrt[n]{a} \\
& =4 x^{-\frac{1}{2}} & 2 \text { Use the rule } \frac{1}{a^{m}}=a^{-m}
\end{array}
$$

Practice

1 Evaluate.
a 14^{0}
b $\quad 3^{0}$
c $\quad 5^{0}$
d x^{0}

2 Evaluate.
a $49^{\frac{1}{2}}$
b $64^{\frac{1}{3}}$
c $\quad 125^{\frac{1}{3}}$
d $16^{\frac{1}{4}}$

3 Evaluate.
a $25^{\frac{3}{2}}$
b $8^{\frac{5}{3}}$
c $\quad 49^{\frac{3}{2}}$
d $16^{\frac{3}{4}}$

4 Evaluate.
a 5^{-2}
b $\quad 4^{-3}$
c $\quad 2^{-5}$
d 6^{-2}

5 Simplify.
a $\frac{3 x^{2} \times x^{3}}{2 x^{2}}$
b $\frac{10 x^{5}}{2 x^{2} \times x}$
c $\frac{3 x \times 2 x^{3}}{2 x^{3}}$
d $\frac{7 x^{3} y^{2}}{14 x^{5} y}$
e $\frac{y^{2}}{y^{\frac{1}{2}} \times y}$
f $\frac{c^{\frac{1}{2}}}{c^{2} \times c^{\frac{3}{2}}}$
g $\frac{\left(2 x^{2}\right)^{3}}{4 x^{0}}$
h $\frac{x^{\frac{1}{2}} \times x^{\frac{3}{2}}}{x^{-2} \times x^{3}}$

Watch out!

Remember that any value raised to the power of zero is 1 . This is the rule $a^{0}=1$.

6 Evaluate.
a $4^{-\frac{1}{2}}$
b $\quad 27^{-\frac{2}{3}}$
c $\quad 9^{-\frac{1}{2}} \times 2^{3}$
d $16^{\frac{1}{4}} \times 2^{-3}$
e $\left(\frac{9}{16}\right)^{-\frac{1}{2}}$
f $\left(\frac{27}{64}\right)^{-\frac{2}{3}}$

7 Write the following as a single power of x.
a $\frac{1}{x}$
b $\frac{1}{x^{7}}$
c $\quad \sqrt[4]{x}$
d $\sqrt[5]{x^{2}}$
e $\frac{1}{\sqrt[3]{x}}$
f $\frac{1}{\sqrt[3]{x^{2}}}$

edexcel

8 Write the following without negative or fractional powers.
a x^{-3}
b $\quad x^{0}$
d $x^{\frac{2}{5}}$
e $x^{-\frac{1}{2}}$
c $x^{\frac{1}{5}}$
f $x^{-\frac{3}{4}}$

9 Write the following in the form $a x^{n}$.
a $5 \sqrt{x}$
b $\frac{2}{x^{3}}$
c $\quad \frac{1}{3 x^{4}}$
d $\frac{2}{\sqrt{x}}$
e $\frac{4}{\sqrt[3]{x}}$
f 3

Extend

10 Write as sums of powers of x.
a $\frac{x^{5}+1}{x^{2}}$
b $\quad x^{2}\left(x+\frac{1}{x}\right)$
c $\quad x^{-4}\left(x^{2}+\frac{1}{x^{3}}\right)$

edexcel

Answers
1 a 1
b 1
c $\quad 1$
d 1
2 a 7
b 4
c $\quad 5$
d 2
3 a 125
b 32
c $\quad 343$
d 8
$4 \quad$ a $\quad \frac{1}{25}$
b $\quad \frac{1}{64}$
c $\quad \frac{1}{32}$
d $\frac{1}{36}$
5 a $\frac{3 x^{3}}{2}$
b $\quad 5 x^{2}$
c $3 x$
d $\frac{y}{2 x^{2}}$
e $y^{\frac{1}{2}}$
g $2 x^{6}$
f c^{-3}
$\begin{array}{rrr}6 & \text { a } & \frac{1}{2} \\ & \text { d } & \frac{1}{4}\end{array}$
h x
b $\quad \frac{1}{9}$
c $\quad \frac{8}{3}$
e $\frac{4}{3}$
f $\frac{16}{9}$
$\begin{array}{rrr}7 & \text { a } & x^{-1} \\ & & x^{\frac{2}{5}}\end{array}$
b $\quad x^{-7}$
e $x^{-\frac{1}{3}}$
c $x^{\frac{1}{4}}$
$8 \quad$ a $\quad \frac{1}{x^{3}}$
b $\quad 1$
c $\sqrt[5]{x}$
d $\sqrt[5]{x^{2}}$
e $\frac{1}{\sqrt{x}}$
f $\frac{1}{\sqrt[4]{x^{3}}}$

9 a $5 x^{\frac{1}{2}}$
b $\quad 2 x^{-3}$
c $\quad \frac{1}{3} x^{-4}$
d $2 x^{-\frac{1}{2}}$
e $\quad 4 x^{-\frac{1}{3}}$
f $\quad 3 x^{0}$

10 a $x^{3}+x^{-2}$
b $\quad x^{3}+x$
c $\quad x^{-2}+x^{-7}$
:\#

Factorising expressions

A LEVEL LINKS

Scheme of work: 1 b . Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- Factorising an expression is the opposite of expanding the brackets.
- A quadratic expression is in the form $a x^{2}+b x+c$, where $a \neq 0$.
- To factorise a quadratic equation find two numbers whose sum is b and whose product is $a c$.
- An expression in the form $x^{2}-y^{2}$ is called the difference of two squares. It factorises to $(x-y)(x+y)$.

Examples

Example 1 Factorise $15 x^{2} y^{3}+9 x^{4} y$

$$
15 x^{2} y^{3}+9 x^{4} y=3 x^{2} y\left(5 y^{2}+3 x^{2}\right)
$$

The highest common factor is $3 x^{2} y$. So take $3 x^{2} y$ outside the brackets and then divide each term by $3 x^{2} y$ to find the terms in the brackets

Example 2 Factorise $4 x^{2}-25 y^{2}$

$$
4 x^{2}-25 y^{2}=(2 x+5 y)(2 x-5 y)
$$

This is the difference of two squares as the two terms can be written as $(2 x)^{2}$ and $(5 y)^{2}$

Example 3 Factorise $x^{2}+3 x-10$

$$
\begin{aligned}
& b=3, a c=-10 \\
& \begin{aligned}
\text { So } x^{2}+3 x-10 & =x^{2}+5 x-2 x-10 \\
& =x(x+5)-2(x+5) \\
& =(x+5)(x-2)
\end{aligned}
\end{aligned}
$$

1 Work out the two factors of $a c=-10$ which add to give $b=3$ (5 and -2)
2 Rewrite the b term ($3 x$) using these two factors
3 Factorise the first two terms and the last two terms
$4(x+5)$ is a factor of both terms

Example 4 Factorise $6 x^{2}-11 x-10$

$$
\begin{aligned}
& b=-11, a c=-60 \\
& \text { So } \\
& \begin{aligned}
6 x^{2}-11 x-10 & =6 x^{2}-15 x+4 x-10 \\
& =3 x(2 x-5)+2(2 x-5) \\
& =(2 x-5)(3 x+2)
\end{aligned}
\end{aligned}
$$

1 Work out the two factors of $a c=-60$ which add to give $b=-11$ (-15 and 4)
2 Rewrite the b term ($-11 x$) using these two factors
3 Factorise the first two terms and the last two terms
$4(2 x-5)$ is a factor of both terms

Example 5 Simplify $\frac{x^{2}-4 x-21}{2 x^{2}+9 x+9}$

$$
\frac{x^{2}-4 x-21}{2 x^{2}+9 x+9}
$$

For the numerator:
$b=-4, a c=-21$
So
$x^{2}-4 x-21=x^{2}-7 x+3 x-21$
$=x(x-7)+3(x-7)$
$=(x-7)(x+3)$
For the denominator:
$b=9, a c=18$
So
$2 x^{2}+9 x+9=2 x^{2}+6 x+3 x+9$
$=2 x(x+3)+3(x+3)$
$=(x+3)(2 x+3)$
So
$\frac{x^{2}-4 x-21}{2 x^{2}+9 x+9}=\frac{(x-7)(x+3)}{(x+3)(2 x+3)}$
$=\frac{x-7}{2 x+3}$

1 Factorise the numerator and the denominator

2 Work out the two factors of $a c=-21$ which add to give $b=-4$ (-7 and 3)

3 Rewrite the b term ($-4 x$) using these two factors
4 Factorise the first two terms and the last two terms
$5(x-7)$ is a factor of both terms
6 Work out the two factors of $a c=18$ which add to give $b=9$ (6 and 3)

7 Rewrite the b term ($9 x$) using these two factors
8 Factorise the first two terms and the last two terms
$9(x+3)$ is a factor of both terms
$10(x+3)$ is a factor of both the numerator and denominator so cancels out as a value divided by itself is 1

edexcel

Practice

1 Factorise.
a $\quad 6 x^{4} y^{3}-10 x^{3} y^{4}$
b $\quad 21 a^{3} b^{5}+35 a^{5} b^{2}$
c $25 x^{2} y^{2}-10 x^{3} y^{2}+15 x^{2} y^{3}$

2 Factorise

Hint

Take the highest common factor outside the bracket.
a $\quad x^{2}+7 x+12$
b $\quad x^{2}+5 x-14$
c $x^{2}-11 x+30$
d $x^{2}-5 x-24$
e $\quad x^{2}-7 x-18$
f $x^{2}+x-20$
g $x^{2}-3 x-40$
h $x^{2}+3 x-28$

3 Factorise
a $36 x^{2}-49 y^{2}$
b $4 x^{2}-81 y^{2}$
c $\quad 18 a^{2}-200 b^{2} c^{2}$

4 Factorise
a $\quad 2 x^{2}+x-3$
b $\quad 6 x^{2}+17 x+5$
c $\quad 2 x^{2}+7 x+3$
d $9 x^{2}-15 x+4$
e $\quad 10 x^{2}+21 x+9$
f $12 x^{2}-38 x+20$

5 Simplify the algebraic fractions.
a $\frac{2 x^{2}+4 x}{x^{2}-x}$
b $\frac{x^{2}+3 x}{x^{2}+2 x-3}$
c $\frac{x^{2}-2 x-8}{x^{2}-4 x}$
d $\frac{x^{2}-5 x}{x^{2}-25}$
e $\frac{x^{2}-x-12}{x^{2}-4 x}$
f $\frac{2 x^{2}+14 x}{2 x^{2}+4 x-70}$

6 Simplify
a $\frac{9 x^{2}-16}{3 x^{2}+17 x-28}$
b $\frac{2 x^{2}-7 x-15}{3 x^{2}-17 x+10}$
c $\frac{4-25 x^{2}}{10 x^{2}-11 x-6}$
d $\frac{6 x^{2}-x-1}{2 x^{2}+7 x-4}$

Extend

7 Simplify $\sqrt{x^{2}+10 x+25}$

8 Simplify $\frac{(x+2)^{2}+3(x+2)^{2}}{x^{2}-4}$

edexcel

Answers

1 a $2 x^{3} y^{3}(3 x-5 y)$
b $\quad 7 a^{3} b^{2}\left(3 b^{3}+5 a^{2}\right)$
c $5 x^{2} y^{2}(5-2 x+3 y)$
2 a $(x+3)(x+4)$
b $\quad(x+7)(x-2)$
c $\quad(x-5)(x-6)$
d $(x-8)(x+3)$
e $\quad(x-9)(x+2)$
f $\quad(x+5)(x-4)$
g $\quad(x-8)(x+5)$
h $(x+7)(x-4)$

3 a $(6 x-7 y)(6 x+7 y)$
b $(2 x-9 y)(2 x+9 y)$
c $2(3 a-10 b c)(3 a+10 b c)$
4 a $(x-1)(2 x+3)$
b $\quad(3 x+1)(2 x+5)$
c $\quad(2 x+1)(x+3)$
d $(3 x-1)(3 x-4)$
e $\quad(5 x+3)(2 x+3)$
f $2(3 x-2)(2 x-5)$

5 a $\frac{2(x+2)}{x-1}$
b $\frac{x}{x-1}$
c $\frac{x+2}{x}$
d $\frac{x}{x+5}$
e $\frac{x+3}{x}$
f $\frac{x}{x-5}$
$6 \quad$ a $\quad \frac{3 x+4}{x+7}$
b $\frac{2 x+3}{3 x-2}$
c $\frac{2-5 x}{2 x-3}$
d $\frac{3 x+1}{x+4}$
$7 \quad(x+5)$
$8 \frac{4(x+2)}{x-2}$

Completing the square

A LEVEL LINKS

Scheme of work: 1 b . Quadratic functions - factorising, solving, graphs and the discriminants

Key points

- Completing the square for a quadratic rearranges $a x^{2}+b x+c$ into the form $p(x+q)^{2}+r$
- If $a \neq 1$, then factorise using a as a common factor.

Examples

Example 1 Complete the square for the quadratic expression $x^{2}+6 x-2$

$$
\begin{aligned}
& x^{2}+6 x-2 \\
& =(x+3)^{2}-9-2 \\
& =(x+3)^{2}-11
\end{aligned}
$$

1 Write $x^{2}+b x+c$ in the form

$$
\left(x+\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}+c
$$

2 Simplify

Example 2 Write $2 x^{2}-5 x+1$ in the form $p(x+q)^{2}+r$

$$
\begin{aligned}
& 2 x^{2}-5 x+1 \\
& =2\left(x^{2}-\frac{5}{2} x\right)+1 \\
& =2\left[\left(x-\frac{5}{4}\right)^{2}-\left(\frac{5}{4}\right)^{2}\right]+1 \\
& =2\left(x-\frac{5}{4}\right)^{2}-\frac{25}{8}+1 \\
& =2\left(x-\frac{5}{4}\right)^{2}-\frac{17}{8}
\end{aligned}
$$

1 Before completing the square write $a x^{2}+b x+c$ in the form $a\left(x^{2}+\frac{b}{a} x\right)+c$
2 Now complete the square by writing $x^{2}-\frac{5}{2} x$ in the form $\left(x+\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}$

3 Expand the square brackets - don't forget to multiply $\left(\frac{5}{4}\right)^{2}$ by the factor of 2

4 Simplify

edexcel

Practice

1 Write the following quadratic expressions in the form $(x+p)^{2}+q$
a $\quad x^{2}+4 x+3$
b $\quad x^{2}-10 x-3$
c $x^{2}-8 x$
d $x^{2}+6 x$
e $\quad x^{2}-2 x+7$
f $x^{2}+3 x-2$

2 Write the following quadratic expressions in the form $p(x+q)^{2}+r$
a $2 x^{2}-8 x-16$
b $4 x^{2}-8 x-16$
c $3 x^{2}+12 x-9$
d $2 x^{2}+6 x-8$

3 Complete the square.
a $\quad 2 x^{2}+3 x+6$
b $\quad 3 x^{2}-2 x$
c $5 x^{2}+3 x$
d $3 x^{2}+5 x+3$

Extend

4 Write $\left(25 x^{2}+30 x+12\right)$ in the form $(a x+b)^{2}+c$.

edexcel

Answers

1 a $(x+2)^{2}-1$
c $\quad(x-4)^{2}-16$
d $\quad(x+3)^{2}-9$
e $\quad(x-1)^{2}+6$
f $\left(x+\frac{3}{2}\right)^{2}-\frac{17}{4}$
2 a $2(x-2)^{2}-24$
b $4(x-1)^{2}-20$
c $\quad 3(x+2)^{2}-21$
d $2\left(x+\frac{3}{2}\right)^{2}-\frac{25}{2}$

3 a $2\left(x+\frac{3}{4}\right)^{2}+\frac{39}{8}$
b $3\left(x-\frac{1}{3}\right)^{2}-\frac{1}{3}$
c $\quad 5\left(x+\frac{3}{10}\right)^{2}-\frac{9}{20}$
d $3\left(x+\frac{5}{6}\right)^{2}+\frac{11}{12}$
$4 \quad(5 x+3)^{2}+3$
b $(x-5)^{2}-28$
b $-1(x-1)^{2}-20$

Solving linear and quadratic simultaneous equations

A LEVEL LINKS

Scheme of work: 1c. Equations - quadratic/linear simultaneous

Key points

- Make one of the unknowns the subject of the linear equation (rearranging where necessary).
- Use the linear equation to substitute into the quadratic equation.
- There are usually two pairs of solutions.

Examples

Example 1 Solve the simultaneous equations $y=x+1$ and $x^{2}+y^{2}=13$

```
x}+(x+1\mp@subsup{)}{}{2}=1
\mp@subsup{x}{}{2}+\mp@subsup{x}{}{2}+x+x+1=13
2x+2x+1=13
2x}+2x-12=
(2x-4)(x+3)=0
So }x=2\mathrm{ or }x=-
Using y = x+1
When }x=2,y=2+1=
When }x=-3,y=-3+1=-
So the solutions are
    x=2,y=3 and }x=-3,y=-
Check:
equation 1:3=2+1 YES
    and -2 = -3+1 YES
equation 2: 2 2 + 3}\mp@subsup{3}{}{2}=13\quad\mathrm{ YES
    and (-3\mp@subsup{)}{}{2}+(-2\mp@subsup{)}{}{2}=13 YES
```

1 Substitute $x+1$ for y into the second equation.
2 Expand the brackets and simplify.

3 Factorise the quadratic equation.
4 Work out the values of x.
5 To find the value of y, substitute both values of x into one of the original equations.

6 Substitute both pairs of values of x and y into both equations to check your answers.

Example 2 Solve $2 x+3 y=5$ and $2 y^{2}+x y=12$ simultaneously.
$x=\frac{5-3 y}{2}$
$2 y^{2}+\left(\frac{5-3 y}{2}\right) y=12$
$2 y^{2}+\frac{5 y-3 y^{2}}{2}=12$
$4 y^{2}+5 y-3 y^{2}=24$
$y^{2}+5 y-24=0$
$(y+8)(y-3)=0$
So $y=-8$ or $y=3$
Using $2 x+3 y=5$
When $y=-8, \quad 2 x+3 \times(-8)=5, \quad x=14.5$
When $y=3, \quad 2 x+3 \times 3=5, \quad x=-2$
So the solutions are
$x=14.5, y=-8$ and $x=-2, y=3$
Check:
equation $1: 2 \times 14.5+3 \times(-8)=5 \quad$ YES
and $2 \times(-2)+3 \times 3=5$
equation $2: 2 \times(-8)^{2}+14.5 \times(-8)=12$ YES
and $2 \times(3)^{2}+(-2) \times 3=12$ YES

1 Rearrange the first equation.
2 Substitute $\frac{5-3 y}{2}$ for x into the second equation. Notice how it is easier to substitute for x than for y.

3 Expand the brackets and simplify.

4 Factorise the quadratic equation.
5 Work out the values of y.
6 To find the value of x, substitute both values of y into one of the original equations.

7 Substitute both pairs of values of x and y into both equations to check your answers.

Practice

Solve these simultaneous equations.
$1 \quad y=2 x+1$
$x^{2}+y^{2}=10$
$3 y=x-3$
$x^{2}+y^{2}=5$
$5 \quad y=3 x-5$
$y=x^{2}-2 x+1$
$\begin{array}{rl}7 & y=x+5 \\ & x^{2}+y^{2}=25\end{array}$
$9 y=2 x$
$y^{2}-x y=8$
$2 y=6-x$
$x^{2}+y^{2}=20$
$4 y=9-2 x$
$x^{2}+y^{2}=17$
$6 y=x-5$
$y=x^{2}-5 x-12$
$8 \quad y=2 x-1$
$x^{2}+x y=24$
$10 \quad 2 x+y=11$
$x y=15$

Extend

$11 x-y=1$
$x^{2}+y^{2}=3$
$12 y-x=2$
$x^{2}+x y=3$

edexcel

Answers

$1 x=1, y=3$
$x=-\frac{9}{5}, y=-\frac{13}{5}$
$2 x=2, y=4$
$x=4, y=2$
$3 x=1, y=-2$
$x=2, y=-1$
$4 x=4, y=1$
$x=\frac{16}{5}, y=\frac{13}{5}$
$5 x=3, y=4$
$x=2, y=1$
$6 x=7, y=2$
$x=-1, y=-6$
$7 x=0, y=5$
$x=-5, y=0$
$8 \quad x=-\frac{8}{3}, y=-\frac{19}{3}$
$x=3, y=5$
$9 x=-2, y=-4$
$x=2, y=4$
$10 x=\frac{5}{2}, y=6$
$x=3, y=5$
$11 x=\frac{1+\sqrt{5}}{2}, y=\frac{-1+\sqrt{5}}{2}$
$x=\frac{1-\sqrt{5}}{2}, y=\frac{-1-\sqrt{5}}{2}$
$12 x=\frac{-1+\sqrt{7}}{2}, y=\frac{3+\sqrt{7}}{2}$
$x=\frac{-1-\sqrt{7}}{2}, y=\frac{3-\sqrt{7}}{2}$
:

Parallel and perpendicular lines

A LEVEL LINKS

Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems

Key points

- When lines are parallel they have the same gradient
- A line perpendicular to the line with equation $y=m x+c$ has gradient $-\frac{1}{m}$.

Examples

Example 1 Find the equation of the line parallel to $y=2 x+4$ which passes through the point $(4,9)$.

$$
\begin{aligned}
& y=2 x+4 \\
& m=2 \\
& y=2 x+c \\
& 9=2 \times 4+c \\
& 9=8+c \\
& c=1 \\
& y=2 x+1
\end{aligned}
$$

1 As the lines are parallel they have the same gradient.
2 Substitute $m=2$ into the equation of a straight line $y=m x+c$.
3 Substitute the coordinates into the equation $y=2 x+c$
4 Simplify and solve the equation.
5 Substitute $c=1$ into the equation $y=2 x+c$

Example 2 Find the equation of the line perpendicular to $y=2 x-3$ which passes through the point $(-2,5)$.

$y=2 x-3$ $m=2$	1 $-\frac{1}{m}=-\frac{1}{2}$ $y=-\frac{1}{2} x+c$ As the lines are perpendicular, the gradient of the perpendicular line			
$5=-\frac{1}{2} \times(-2)+c$				
is $-\frac{1}{m}$.				
$5=1+c$				
$c=4$				
$y=-\frac{1}{2} x+4$		\quad	2	Substitute $m=-\frac{1}{2}$ into $y=m x+c$. 3 Substitute the coordinates $(-2,5)$ into the equation $y=-\frac{1}{2} x+c$
:---	:---	:---		
4	Simplify and solve the equation.			

Example 3 A line passes through the points $(0,5)$ and $(9,-1)$.
Find the equation of the line which is perpendicular to the line and passes through its midpoint.

$$
\begin{aligned}
& \begin{array}{|l|l}
\hline x_{1}=0, x_{2}=9, y_{1}=5 \text { and } y_{2}=-1 & \mathbf{1} \text { Substitute the coordinates into the }
\end{array} \\
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-1-5}{9-0} \\
& =\frac{-6}{9}=-\frac{2}{3} \\
& -\frac{1}{m}=\frac{3}{2} \\
& y=\frac{3}{2} x+c \\
& \text { Midpoint }=\left(\frac{0+9}{2}, \frac{5+(-1)}{2}\right)=\left(\frac{9}{2}, 2\right) \\
& 2=\frac{3}{2} \times \frac{9}{2}+c \\
& c=-\frac{19}{4} \\
& y=\frac{3}{2} x-\frac{19}{4} \\
& 1 \text { Substitute the coordinates into the } \\
& \text { equation } m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \text { to work out } \\
& \text { the gradient of the line. } \\
& 2 \text { As the lines are perpendicular, the } \\
& \text { gradient of the perpendicular line } \\
& \text { is }-\frac{1}{m} \text {. } \\
& 3 \text { Substitute the gradient into the } \\
& \text { equation } y=m x+c \text {. } \\
& 4 \text { Work out the coordinates of the } \\
& \text { midpoint of the line. } \\
& 5 \text { Substitute the coordinates of the } \\
& \text { midpoint into the equation. } \\
& 6 \text { Simplify and solve the equation. } \\
& 7 \text { Substitute } c=-\frac{19}{4} \text { into the equation } \\
& y=\frac{3}{2} x+c .
\end{aligned}
$$

Practice

1 Find the equation of the line parallel to each of the given lines and which passes through each of the given points.
a $y=3 x+1 \quad(3,2)$
b $\quad y=3-2 x \quad(1,3)$
c $2 x+4 y+3=0(6,-3)$
d $2 y-3 x+2=0$

2 Find the equation of the line perpendicular to $y=\frac{1}{2} x-3$ which passes through the point $(-5,3)$.

Hint

If $m=\frac{a}{b}$ then the negative reciprocal $-\frac{1}{m}=-\frac{b}{a}$

3 Find the equation of the line perpendicular to each of the given lines and which passes through each of the given points.
a $y=2 x-6$
$(4,0)$
b $y=-\frac{1}{3} x+\frac{1}{2}$
c $x-4 y-4=0$
d $5 y+2 x-5=0$

4 In each case find an equation for the line passing through the origin which is also perpendicular to the line joining the two points given.
a $(4,3),(-2,-9)$
b $(0,3),(-10,8)$

Extend

5 Work out whether these pairs of lines are parallel, perpendicular or neither.
a $y=2 x+3$
b $\quad y=3 x$
c $\quad y=4 x-3$
$2 x+y-3=0$
$4 y+x=2$
d $\quad 3 x-y+5=0$
$x+3 y=1$
e $\quad 2 x+5 y-1=0$
$y=2 x+7$
f $\quad 2 x-y=6$
$6 x-3 y+3=0$

6 The straight line \mathbf{L}_{1} passes through the points A and B with coordinates $(-4,4)$ and $(2,1)$, respectively.
a Find the equation of \mathbf{L}_{1} in the form $a x+b y+c=0$

The line \mathbf{L}_{2} is parallel to the line \mathbf{L}_{1} and passes through the point C with coordinates $(-8,3)$.
b Find the equation of \mathbf{L}_{2} in the form $a x+b y+c=0$

The line \mathbf{L}_{3} is perpendicular to the line $\mathbf{L}_{\mathbf{1}}$ and passes through the origin.
c Find an equation of \mathbf{L}_{3}

edexcel

Answers

1 a $y=3 x-7$
c $y=-\frac{1}{2} x$
$2 y=-2 x-7$

3 a $y=-\frac{1}{2} x+2$
b $\quad y=3 x+7$
c $y=-4 x+35$
d $\quad y=\frac{5}{2} x-8$

4 a $y=-\frac{1}{2} x$
b $\quad y=2 x$
$\begin{array}{lll}5 & \text { a } & \text { Parallel } \\ & \text { d } & \text { Perpendicular }\end{array}$

6 a $x+2 y-4=0$
b $\quad x+2 y+2=0$
c $\quad y=2 x$
b Neither c Perpendicular
e Neither f Parallel
:
8

Proportion

A LEVEL LINKS

Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems

Key points

Two quantities are in direct proportion when, as one quantity increases, the other increases at the same rate.
Their ratio remains the same.
' y is directly proportional to x ' is written as $y \propto x$.
If $y \propto x$ then $y=k x$, where k is a constant.
When x is directly proportional to y, the graph is a straight line passing through the origin.

Two quantities are in inverse proportion when, as one quantity increases, the other decreases at the same rate.
' y is inversely proportional to x ' is written as $y \propto \frac{1}{x}$.
If $y \propto \frac{1}{x}$ then $y=\frac{k}{x}$, where k is a constant.
When x is inversely proportional to y the graph is the same shape as
 the graph of $y=\frac{1}{x}$

Examples

Example $1 y$ is directly proportional to x.
When $y=16, x=5$.
a Find x when $y=30$.
b Sketch the graph of the formula.

$$
\begin{aligned}
& \text { a } \quad y \propto x \\
& \\
& y=k x \\
& 16=k \times 5 \\
& k=3.2 \\
& \\
& y=3.2 x \\
& \\
& \text { When } y=30, \\
& 30=3.2 \times x \\
& x=9.375
\end{aligned}
$$

1 Write y is directly proportional to x, using the symbol \propto.
2 Write the equation using k.
3 Substitute $y=16$ and $x=5$ into $y=k x$.
4 Solve the equation to find k.
5 Substitute the value of k back into the equation $y=k x$.

6 Substitute $y=30$ into $y=3.2 x$ and solve to find x when $y=30$.

| \mathbf{b} | 7
 The graph of $y=3.2 x$ is a straight
 line passing through $(0,0)$ with a
 gradient of 3.2. |
| :--- | :--- | :--- |

Example $2 y$ is directly proportional to x^{2}.
When $x=3, y=45$.
a Find y when $x=5$.
b Find x when $y=20$.

$$
\begin{aligned}
& \text { a } y \propto x^{2} \\
& y=k x^{2} \\
& 45=k \times 3^{2} \\
& k=5 \\
& y=5 x^{2} \\
& \text { When } x=5 \text {, } \\
& y=5 \times 5^{2} \\
& y=125 \\
& \text { b } 20=5 \times x^{2} \\
& x^{2}=4 \\
& x= \pm 2
\end{aligned}
$$

1 Write y is directly proportional to x^{2}, using the symbol \propto.

2 Write the equation using k.
3 Substitute $y=45$ and $x=3$ into $y=k x^{2}$.
4 Solve the equation to find k.
5 Substitute the value of k back into the equation $y=k x^{2}$.

6 Substitute $x=5$ into $y=5 x^{2}$ and solve to find y when $x=5$.

7 Substitute $y=20$ into $y=5 x^{2}$ and solve to find x when $y=4$.

Example $3 \quad P$ is inversely proportional to Q.
When $P=100, Q=10$.
Find Q when $P=20$.

$P \propto \frac{1}{Q}$	1 Write P is inversely proportional to Q, using the symbol \propto.
$P=\frac{k}{Q}$	2 Write the equation using k.
$100=\frac{k}{10}$	3 Substitute $P=100$ and $Q=10$.
$k=1000$	4 Solve the equation to find k.
$P=\frac{1000}{Q}$	5 Substitute the value of k into $P=\frac{k}{Q}$
$20=\frac{1000}{Q}$	6 Substitute $P=20$ into $P=\frac{1000}{Q}$ and
$Q=\frac{1000}{20}=50$	solve to find Q when $P=20$.

Practice

1 Paul gets paid an hourly rate. The amount of pay ($£ P$) is directly proportional to the number of hours (h) he works.
When he works 8 hours he is paid $£ 56$.
If Paul works for 11 hours, how much is he paid?

Hint

Substitute the values given for P and h into the formula to calculate k.
$2 x$ is directly proportional to y.
$x=35$ when $y=5$.
a Find a formula for x in terms of y.
b Sketch the graph of the formula.
c Find x when $y=13$.
d Find y when $x=63$.
$3 Q$ is directly proportional to the square of Z.
$Q=48$ when $Z=4$.
a Find a formula for Q in terms of Z.
b Sketch the graph of the formula.
c Find Q when $Z=5$.
d Find Z when $Q=300$.
$4 y$ is directly proportional to the square of x.
$x=2$ when $y=10$.
a Find a formula for y in terms of x.
b Sketch the graph of the formula.
c Find x when $y=90$.
$5 B$ is directly proportional to the square root of C.
$C=25$ when $B=10$.
a Find B when $C=64$.
b Find C when $B=20$.
$6 \quad C$ is directly proportional to D.
$C=100$ when $D=150$.
Find C when $D=450$.
$7 y$ is directly proportional to x.
$x=27$ when $y=9$.
Find x when $y=3.7$.
$8 \quad m$ is proportional to the cube of n.
$m=54$ when $n=3$.
Find n when $m=250$.

Extend

$9 \quad s$ is inversely proportional to t.
a Given that $s=2$ when $t=2$, find a formula for s in terms of t.
b Sketch the graph of the formula.
c Find t when $s=1$.
$10 a$ is inversely proportional to b.
$a=5$ when $b=20$.
a Find a when $b=50$.
b Find b when $a=10$.
$11 v$ is inversely proportional to w. $w=4$ when $v=20$.
a Find a formula for v in terms of w.
b Sketch the graph of the formula.
c Find w when $v=2$.
$12 L$ is inversely proportional to W.
$L=12$ when $W=3$.
Find W when $L=6$.
$13 s$ is inversely proportional to t.
$s=6$ when $t=12$.
a Find s when $t=3$.
b Find t when $s=18$.
$14 y$ is inversely proportional to x^{2}.
$y=4$ when $x=2$.
Find y when $x=4$.
$15 y$ is inversely proportional to the square root of x.
$x=25$ when $y=1$.
Find x when $y=5$.
$16 a$ is inversely proportional to b. $a=0.05$ when $b=4$.
a Find a when $b=2$.
b Find b when $a=2$.

Answers

$1 £ 77$

2 a $x=7 y$
$\xrightarrow{\text { b }} \underset{\sim}{\text { (}} x=7 y$ or $y=\frac{1}{4} x$
c 91
d $\quad 9$

3 a $Q=3 Z^{2}$
b

c $\quad 75$
d ± 10

4 a $y=2.5 x^{2}$
b

$5 \quad$ a 16
b $\quad 100$

6300
$7 \quad 11.1$

85
$9 \quad \mathbf{a} \quad s=\frac{4}{t}$
c 4

10 a 2

11 a $v=\frac{80}{w}$
c 40
b $\quad 10$
b

b

126
13 a 24
b 4
$14 \quad 1$
151
16 a 0.1
b 0.1
:

Trigonometry in right-angled triangles

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs

Key points

- In a right-angled triangle:
- the side opposite the right angle is called the hypotenuse
- the side opposite the angle θ is called the opposite
- the side next to the angle θ is called the adjacent.
opposite

adjacent
- In a right-angled triangle:
- the ratio of the opposite side to the hypotenuse is the sine of angle $\theta, \sin \theta=\frac{\mathrm{opp}}{\mathrm{hyp}}$
- the ratio of the adjacent side to the hypotenuse is the cosine of angle $\theta, \cos \theta=\frac{\text { adj }}{\text { hyp }}$
- the ratio of the opposite side to the adjacent side is the tangent of angle $\theta, \tan \theta=\frac{\mathrm{opp}}{\mathrm{adj}}$
- If the lengths of two sides of a right-angled triangle are given, you can find a missing angle using the inverse trigonometric functions: $\sin ^{-1}, \cos ^{-1}, \tan ^{-1}$.
- The sine, cosine and tangent of some angles may be written exactly.

	$\mathbf{0}$	$\mathbf{3 0 ^ { \circ }}$	$\mathbf{4 5}$	$\mathbf{6 0}$	$\mathbf{9 0 ^ { \circ }}$			
\sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1			
\cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0			
\tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$				

Examples

Example 1 Calculate the length of side x.
Give your answer correct to 3 significant figures.

	1	Always start by labelling the sides.
$\cos \theta=\frac{\text { adj }}{\text { hyp }}$	2	You are given the adjacent and the hypotenuse so use the cosine ratio.
$\cos 25^{\circ}=\frac{6}{x}$	3	Substitute the sides and angle into the cosine ratio.
$x=\frac{6}{\cos 25^{\circ}}$	4	Rearrange to make x the subject.
$x=6.6202675 \ldots$	5	Use your calculator to work out $6 \div \cos 25^{\circ}$.
$x=6.62 \mathrm{~cm}$	6	Round your answer to 3 significant figures and write the units in your answer.

Example 2 Calculate the size of angle x.
Give your answer correct to 3 significant figures.

$$
\begin{aligned}
& \tan \theta=\frac{\mathrm{opp}}{\mathrm{adj}} \\
& \tan x=\frac{3}{4.5} \\
& x=\tan ^{-1}\left(\frac{3}{4.5}\right) \\
& x=33.6900675 \ldots \\
& x=33.7^{\circ}
\end{aligned}
$$

1 Always start by labelling the sides.

2 You are given the opposite and the adjacent so use the tangent ratio.
3 Substitute the sides and angle into the tangent ratio.
4 Use $\tan ^{-1}$ to find the angle.
5 Use your calculator to work out $\tan ^{-1}(3 \div 4.5)$.

6 Round your answer to 3 significant figures and write the units in your answer.

Example 3 Calculate the exact size of angle x.

	1 Always start by labelling the sides.
$\tan \theta=\frac{\mathrm{opp}}{\mathrm{adj}}$	2 You are given the opposite and the adjacent so use the tangent ratio.
$\tan x=\frac{\sqrt{3}}{3}$	3 Substitute the sides and angle into the tangent ratio.
$x=30^{\circ}$	4 Use the table from the key points to find the angle.

Practice

1 Calculate the length of the unknown side in each triangle.
Give your answers correct to 3 significant figures.
a

c

e

b

d

f

edexcel

2 Calculate the size of angle x in each triangle.
Give your answers correct to 1 decimal place.
a

c

b

d

3 Work out the height of the isosceles triangle. Give your answer correct to 3 significant figures.

Hint:

Split the triangle into two right-angled triangles.

4 Calculate the size of angle θ.
Give your answer correct to 1 decimal place.

Hint:

First work out the length of the common side to both triangles, leaving your answer in surd form.

5 Find the exact value of x in each triangle.
a

c

b

d

\#

The cosine rule

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs
Textbook: Pure Year 1, 9.1 The cosine rule

Key points

- $\quad a$ is the side opposite angle A . b is the side opposite angle B. c is the side opposite angle C.

- You can use the cosine rule to find the length of a side when two sides and the included angle are given.
- To calculate an unknown side use the formula $a^{2}=b^{2}+c^{2}-2 b c \cos A$.
- Alternatively, you can use the cosine rule to find an unknown angle if the lengths of all three sides are given.
- To calculate an unknown angle use the formula $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$.

Examples

Example 4 Work out the length of side w.
Give your answer correct to 3 significant figures.

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& w^{2}=8^{2}+7^{2}-2 \times 8 \times 7 \times \cos 45^{\circ} \\
& w^{2}=33.80404051 \ldots \\
& w=\sqrt{33.80404051} \\
& w=5.81 \mathrm{~cm}
\end{aligned}
$$

1 Always start by labelling the angles and sides.

2 Write the cosine rule to find the side.

3 Substitute the values a, b and A into the formula.
4 Use a calculator to find w^{2} and then w.
5 Round your final answer to 3 significant figures and write the units in your answer.
:

Example 5 Work out the size of angle θ.
Give your answer correct to 1 decimal place.

Practice

6 Work out the length of the unknown side in each triangle.
Give your answers correct to 3 significant figures.
a

b

d

edexcel

7 Calculate the angles labelled θ in each triangle.
Give your answer correct to 1 decimal place.
a

b

c

d

8 a Work out the length of WY. Give your answer correct to 3 significant figures.
b Work out the size of angle WXY. Give your answer correct to 1 decimal place.

\#

The sine rule

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs
Textbook: Pure Year 1, 9.2 The sine rule

Key points

- $\quad a$ is the side opposite angle A.
b is the side opposite angle B .
c is the side opposite angle C .

- You can use the sine rule to find the length of a side when its opposite angle and another opposite side and angle are given.
- To calculate an unknown side use the formula $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$.
- Alternatively, you can use the sine rule to find an unknown angle if the opposite side and another opposite side and angle are given.
- To calculate an unknown angle use the formula $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$.

Examples

Example 6 Work out the length of side x.
Give your answer correct to 3 significant figures.

Example 7 Work out the size of angle θ. Give your answer correct to 1 decimal place.

$\frac{\sin A}{a}=\frac{\sin B}{b}$
$\frac{\sin \theta}{8}=\frac{\sin 127^{\circ}}{14}$
$\sin \theta=\frac{8 \times \sin 127^{\circ}}{14}$
$\theta=27.2^{\circ}$

1 Always start by labelling the angles and sides.

2 Write the sine rule to find the angle.
3 Substitute the values a, b, A and B into the formula.
4 Rearrange to make $\sin \theta$ the subject.
5 Use $\sin ^{-1}$ to find the angle. Round your answer to 1 decimal place and write the units in your answer.

Practice

9 Find the length of the unknown side in each triangle.
Give your answers correct to 3 significant figures.

c

b

d

edexcel

10 Calculate the angles labelled θ in each triangle.
Give your answer correct to 1 decimal place.
a

b

c

d

11 a Work out the length of QS.
Give your answer correct to 3 significant figures.
b Work out the size of angle RQS. Give your answer correct to 1 decimal place.

Areas of triangles

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs
Textbook: Pure Year 1, 9.3 Areas of triangles

Key points

- $\quad a$ is the side opposite angle A.
b is the side opposite angle B.
c is the side opposite angle C.
- The area of the triangle is $\frac{1}{2} a b \sin C$.

Examples

Example 8 Find the area of the triangle.

1 Always start by labelling the sides and angles of the triangle.

2 State the formula for the area of a triangle.
3 Substitute the values of a, b and C into the formula for the area of a triangle.
4 Use a calculator to find the area.
5 Round your answer to 3 significant figures and write the units in your answer.

edexcel

Practice

12 Work out the area of each triangle.
Give your answers correct to 3 significant figures.
a

b

c

13 The area of triangle XYZ is $13.3 \mathrm{~cm}^{2}$. Work out the length of XZ .

Hint:

Rearrange the formula to make a side the subject.

Extend

14 Find the size of each lettered angle or side. Give your answers correct to 3 significant figures.
a

b

c

d

15 The area of triangle ABC is $86.7 \mathrm{~cm}^{2}$.
Work out the length of BC.
Give your answer correct to 3 significant figures.

edexcel

Answers

1	$\begin{aligned} & \mathbf{a} \\ & \mathbf{d} \end{aligned}$	$\begin{aligned} & 6.49 \mathrm{~cm} \\ & 74.3 \mathrm{~mm} \end{aligned}$	b	$\begin{aligned} & 6.93 \mathrm{~cm} \\ & 7.39 \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \mathbf{c} \\ & \mathbf{f} \end{aligned}$	$\begin{aligned} & 2.80 \mathrm{~cm} \\ & 6.07 \mathrm{~cm} \end{aligned}$		
2	a	36.9°	b	57.1°	c	47.0°	d	38.7°
3		cm						

5	a	45°	b	1 cm	c	30°	d	$\sqrt{3} \mathrm{~cm}$
6	a	6.46 cm	b	9.26 cm	c	70.8 mm	d	9.70 cm
7	a	$22.2{ }^{\circ}$	b	$52.9{ }^{\circ}$	c	122.9°	d	$93.6{ }^{\circ}$
8	a	13.7 cm	b	76.0°				
9	a	4.33 cm	b	15.0 cm	c	45.2 mm	d	6.39 cm
10	a	$42.8{ }^{\circ}$	b	$52.8{ }^{\circ}$	c	$53.6{ }^{\circ}$	d	28.2°
11	a	8.13 cm	b	$32.3{ }^{\circ}$				
12	a	$18.1 \mathrm{~cm}^{2}$	b	$18.7 \mathrm{~cm}^{2}$	c	$693 \mathrm{~mm}^{2}$		

$13 \quad 5.10 \mathrm{~cm}$
14 a 6.29 cm
b 84.3°
c
5.73 cm
d 58.8°
$15 \quad 15.3 \mathrm{~cm}$

